Mengen- und Spurenelemente

Vorkommen, Resorption und Funktion von Mengen- und Spurenelementen						
Mineralstoff	Vorkommen/Funktion im Körper	Resorption/Ausscheidung	Mangel	Tagesbedarf	Quellen	
Calcium	Vorkommen vu 99% außerhalb der Zellen in Skelett- system und Knochen in gebundener Form (Calciumphosphat) 1% ist in anderen Körpergeweben und Körperflüssigkeiten lokalisiert Funktion: wichtig für die Erreg- barkeit von Nerven- und Muskelzellen Botenstoff innerhalb der Zellen wirkt als Cofaktor bei vielen Enzymen wichtig für die Blut- gerinnung Baustein von Kno- chen und Zähnen dient der Abwehr von Allergien und Ent- zündungen	Den Ein- und Abbau aus Knochen und Zähnen sowie die Aufnahme und Ausscheidung regeln Nebenschilddrüsenhormone. Resorption: +: • Vitamin D (fördert auch den Einbau von Calcium in die Knochen) • Milchzucker -: zu große Fettzufuhr • Oxalsäure (z. B. in Spinat, Rhabarber, Tee, Kartoffeln, Brot) • Phytinsäure (z. B. in Haferkleie) • Phosphorsäure (z. B. in Wurstwaren, Schmelzkäse, Softdrinks Ausscheidung: • Niere, Darm • proteinreiche Kost (bestierisches Eiweiß) erhöht die Ausscheidung über die Nieren • Coffein und Kochsalz verstärken Ausbau aus Knochen	 Ursachen Vitamin-D-Mangel (zu geringe UV-Einwirkung) unzureichende Zufuhr erhöhter Bedarf (Schwangere, Stillende, Kinder) mangelnde Resorption im Dünndarm Erkrankungen der Nebenschilddrüse chronische Nierenerkrankungen Therapie mit Schleifendiuretika Alkoholmissbrauch Hyperventilation Sepsis/Verbrennung Folgen: Knochenabbau (z. B. Osteoporose, Rachitis) chronischen Veränderungen an Haaren, Haut, Zähnen und Nägeln gesteigerte Erregbarkeit von Nerven und Muskeln Tetanie, im Extremfall als Krampf mit Spasmen der Hände und Füße (Pfötchenstellung, Spitzfußstellung) Parästhesien im Gesicht und an den Extremitäten Bronchospasmen, Atemnot, Bauchkrämpfe 	Erwachsene: 800 mg Schwangere: 1200 mg Kinder und Jugendliche: 1000 mg	 Milchprodukte Vollkornprodukte Sojaprodukte Hafermehl Sauerkraut Gemüse: Grünkohl, Chinakohl, Spinat, Brunnenkresse, Petersilie getrocknete Feigen, Sonnenblumenkerne, Nüsse, Sesam 	
Kalium	Vorkommen: zu 98 % intrazellulär (Muskelzellen, Erythrozyten, Leberzellen, Gewebezellen) 2 % im Extrazellular- raum Funktion: • wichtigstes Kation in der Zelle und damit verantwortlich für das intrazelluläre Flüssigkeitsvolumen • wichtig für die Erreg- barkeit von Nerven- und Muskelzellen • wichtig für Biosyn- these von Eiweiß	Resorption: -: Magnesiummangel Kaffee, Alkohol Ausscheidung: • wird im Austausch gegen Natrium hauptsächlich von der Niere ausgeschieden, ein • geringer Teil auch über den Darm • hormonale Steuerung indirekt über Renin-Angiotensin-Aldosteron-System (Natriumrückresorption) • Aufnahme in und Abgabe aus den Zellen wird durch pH-Wert und Insulin gesteuert	Ursachen: Störungen im Wasserhaushalt Störungen im Säure-Basen-Haushalt Magnesiummangel erhöhte Natriumzufuhr erhöhte Blutzucker Schleifendiurektika chronische Nierenleiden Erbrechen, Durchfälle und Laxanzienabusus Folgen: Muskelschwäche Verstopfung Arrhythmien gesteigerte Urinausscheidung	2000 mg	 Fleisch Zitrusfrüchte, Melonen Tomaten alle grünen Blatt- gemüse Sonnenblumen- kerne Bananen Kartoffeln Minzblätter Trockenfrüchte 	

Mineralstoff	Vorkommen/Funktion im Körper	Resorption/Ausscheidung	Mangel	Tagesbedarf	Quellen
Natrium	Vorkommen bis zu 97 Prozent im Extrazellularraum, der Rest in den Zellen 70 Prozent sind rasch austauschbar, 30 Prozent ist gebunden im Knochen als Reserve Funktion: wichtigstes Kation außerhalb der Zellen und damit verantwortlich für das extrazelluläre Flüssigkeitsvolumen und den Blutdruck wichtig für die Erregbarkeit von Nervenund Muskelzellen und für den Transport von Stoffen durch die Zellmembran reguliert den Säuren-Basen-Haushalt mit	Resorption: Natrium liegt in der Nahrung vorrangig in gebundener Form vor, und zwar als Natrium-chlorid (NaCl) = Kochsalz. Natrium kann im Dünnund Dickdarm sowohl durch einen aktiven als auch passiven Mechanismus resorbiert werden Ausscheidung: wird hauptsächlich über die Niere ausgeschieden, nur geringe Mengen über Stuhl und Schweiß wie viel Natrium ausgeschieden wird, steuert ein komplexes Regelsystem über Volumenrezeptoren und die entsprechende Aktivierung von Hormonen (Renin-Angiotensin-Aldosteron-System und atriales natriuretisches Peptid; ANP), die wiederum die Wasser- und Natriumrückresorption in den Nieren erhöhen oder senken	 Ursachen: Meist eine gestörte Rückresorption in den Nieren, sodass zu viel Natrium mit ausgeschieden wird: endokrine Erkrankungen wie M. Addison (Nebenniereninsuffizienz) Nierenerkrankungen Polyurie, z. B. bei Diabetes mellius Diuretika starkes Schwitzen Erbrechen/Durchfall Folgen: Wenig Natrium bedeutet ein reduziertes Extrazellularvolumen: Blutdruckabfall geringe Harnausscheidung gesteigerte Herzfrequenz Exsikkosezeichen, z. B. trockene Haut 	2-3 g	Kochsalz findet sich in sehr vielen Nah- rungsmitteln. Über stark konsservierte Fertignahrung bzw. einen hohen Wurst – und Käsekonsum wird heutzutage i. d. R. zu viel Na- trium über die Nahrung auf- genommen
Magnesium	Vorkommen: • wie Kalium vorwiegend intrazellulär (95 Prozent, vor allem Knochen, aber auch Muskeln, Weichteilgewebe) • 5 Prozent im Extrazellularraum Funktion: • spielt eine wichtige Rolle bei der Erregung von Nervenund Muskelzellen (wie Calcium) • wichtig für die Funktion vieler Enzyme • große Bedeutung für den Stoffwechsel	Resorption: vor allem im Dünndarm, über aktiven Transportprozess der Körper resorbiert Magnesium nicht so einfach wie z. B. Natrium Bioverfügbarkeit hängt z. B. ab von Form, in der Magnesium in der Nahrung vorliegt (Art und Löslichkeit, Art des Nahrungsmittels) Darmmotilität/Passagezeit Lebensalter Flüssigkeitsaufnahme Alkoholkonsum Ausscheidung: über die Nieren der Körper reguliert ständig über ein komplexes, über Sensoren und Hormone gesteuertes Regelsystem seinen Magnesium-Haushalt	Ursachen: • zu geringe Zufuhr: Diät, einseitige Ernährung, zu weiches Trinkwasser, reduzierter Magnesiumgehalt in den Böden und damit in Gemüse und Obst • gestörte Aufnahme: Magen-Darm-Erkrankungen, zu viel Fett/Eiweiß/Alkohol, zu viel Calcium • erhöhter Bedarf: Schwangerschaft, Stillzeit, körperliche Schwäche • erhöhter Verlust: Leistungssport, Magen-Darm-Erkrankungen (Erbrechen, Durchfall), Nieren- und Knochenerkrankungen, erhöhte BZ-Werte Folgen: • gesteigerte Erregbarkeit von Nerven und Muskeln (wie bei Calcium) • Tetanie, im Extremfall als Krampf mit Spasmen der Hände und Füße (Pfötchenstellung, Spitzfußstellung) • Parästhesien im Gesicht und an den Extremitäten	350 mg	 abwechslungsreiche Ernährung dunkelgrünes Gemüse, Hülsenfrüchte, Kartoffeln Getreide, Vollkornprodukte Nüsse Schalentiere Kakao Mineralwasser

Vorkommen, Resorption und Funktion von Mengen- und Spurenelementen							
Mineralstoff	Vorkommen/Funktion im Körper	Resorption/Ausscheidung	Mangel	Tagesbedarf	Quellen		
Eisen (Ferrum)	Vorkommen: • Eisen ist schlecht löslich und kommt deshalb in unterschiedlichen Verbindungen im Körper vor • 80 Prozent "Funktionseisen": Bildung und Entwicklung der Erythrozyten, Transportprozesse etc. • 20 Prozent als "Speichereisen" in Leber, Milz, Darmschleimhaut und Knochenmark Funktion: • Bestandteil des roten Blutfarbstoffs (Hämoglobin) • Cofaktor vieler Enzyme • wichtig für Immunsystem und Stoffwechsel • bindet Säuren und Basen • beteiligt an Vitamin-B-Stoffwechsel	Resorption: der Eisenhaushalt wird über die Aufnahme gesteuert im Dünndarm, vor allem im Duodenum und Jejunum wird durch zahlreiche Faktoren beeinflusst: individueller Eisenstatus, Produktionsrate der Erythrozyten, Mengenverhältnisse von bestimmten Nahrungsbestandteilen, Darmerkrankungen, Alter Bioverfügbarkeit hängt z. B. ab von Menge und chemischer Form (zweioder dreiwertig), Nahrung (Fleisch i. d. R. besser als Pflanzen) +: verstärkte Magensäuresekretion Vitamin C, A Fructose in Obst Polyoxicarbonsäuren in Obst und Gemüsen Milchsäure, Zitronensäure -: Phytinsäure (Phytate) in Getreide, Mais, Reis sowie Vollkorn- und Sojaprodukten Ballaststoffe Kaffee, schwarzer Tee, Rotwein Calcium aluminium-, magnesium- und calciumhaltige Antazida sowie Lipidsenker Umweltgifte wie Cadmium oder Blei Ausscheidung: Eisen hat keinen regulierten Ausscheidungsmechanismus zu viel Eisen kann daher zum Risikofaktor für Arteriosklerose werden (Infarkte!) geringe Mengen verliert der Körper über Stuhl, Galle, Schweiß und Urin	Ursachen: • zu geringe Zufuhr aufgrund von einseitiger Ernährung • geringe Resorption • erhöhter Bedarf • Verluste durch Blutungen: Operationen, Regelblutung, Geschwüre, Tumore etc. Folge: • Eisenmangelanämie • Abwehrschwäche	Erwachsener: 10-15 mg Schwangere: 22-25 mg	 Fleisch Hülsenfrüchte Vollkorn- und Sojaprodukten, Na turreis Kohlrabi, Sauer- kraut, Petersilie, Brunnenkresse, Schnittlauch, Brennesseln Lauch, Roten Beete Tomaten, Artischocken Fenchel, Grünkohl, Schwarz- wurzel, Zucchini, Pilze Holunder, Johannisbeeren 		

Mineralstoff	Vorkommen/Funktion im Körper	Resorption/Ausscheidung	Mangel	Tagesbedarf	Quellen
Silicea (Silicium)	Vorkommen: vor allem in Bindege- weben: Knochen, Blut- gefäße, Haut Funktion: • beeinflusst Elastizität und Festigkeit von Gefäßen • wichtig für Wachs- tum von Haaren, Nägeln • Entgiftung über den Darm	Resorption: • über den Dünndarm, muss vorher durch Bauchspeicheldrüsensekrete aufgespalten werden • Resorptionsrate aus der Nahrung ist gering, abhängig von chemischer Bindungsform, Ballaststoffgehalt (hoch = geringe Resorption) und Verdauungsenzymen/Leistung der Bauchspeicheldrüse Ausscheidung: • resorbiertes Silicium über die Niere • unresorbiertes Sillicium (oft in ballaststoffreicher Nahrung) wird über den Stuhl ausgeschieden	Ursachen: • geringe Zufuhr in der Nahrung • Erkrankungen der Bauchspeicheldrüse Folgen: • Zahnfleischschwund • Bindegewebsschwäche • Haarausfall • brüchige Nägel	20-30 mg	 Vollkornprodukte Gemüse Obst Bier
Phosphor	Vorkommen: nach Calcium der mengenmäßig häufigste Mineralstoff im Körper Phosphor ist sehr reaktionsfähig und tritt in unterschiedlichen Verbindungen auf SE Prozent als anorganische Verbindung mit Calcium (Calciumphosphat) in Knochen und Zähnen (Speicher) TE Prozent in Geweben (Gehirn, Leber, Muskeln) und im Blut Funktion: wichtig für die Erzeugung von Energie (ATP) Baustein von Knochen, Zähnen, Membranen und Nukleinsäuren Bestandteil von Proteinen reguliert pH-Wert	Resorption: Iliegt meist in organischen Verbindungen vor und muss durch spezifische Enzyme erst freigesetzt werden Aufnahme im Dünndarm, aktive (vorrangig) und passive Transportprozesse aktiver Stofftransportwird durch Parathormon (Nebenschilddrüse) und Vitamin D reguliert Vitamin D hoher pH-Wert erhöhte Zufuhr von Calcium, Aluminium und Eisen aufgrund unlösbarer Verbindungen organische Stoff Inosit in Hülsenfrüchten und Getreide Ausscheidung: 60-80 Prozent über die Niere 20-40 Prozent über den Stuhl (hauptsächlich unresorbiert)	Ursachen: Generell ist ein Phosphatmangel selten. Ursachen können sein: parenterale Ernährung fructosereiche Ernährung steigert Phosphatausscheidung über den Urin Effekt wird durch magnesiumarme Ernährung verstärkt bestimmte Medikamente, die in die Hormonregulation eingreifen Folgen: Knochenabbau Muskelschwäche Herzinsuffizienz zerebrale Krampfanfälle	700 mg	 praktisch in allen Lebensmitteln, vor allem in pro- teinreichen Le- bensmitteln wie Milchprodukten Fleisch, Fisch und Eiern wird häufig als Lebensmittelzu- satzstoff einge- setzt (als Säureregulator, Emulgator, Kon- servierungsstoff), deshalb hohe Phosphatgehalte in industriell ver- arbeiteten Nah- rungsmitteln

Vorkommen, Resorption und Funktion von Mengen- und Spurenelementen						
Mineralstoff	Vorkommen/Funktion im Körper	Resorption/Ausscheidung	Mangel	Tagesbedarf	Quellen	
Sulfur (Schwefel)	Vorkommen: Bestandteil von Proteinen Funktion: ist als Bestandteil verschiedener Aminosäuren wie Methionin und Cystin an Stoffwechselprozessen beteiligt beteiligt an der Bildung von Korpel-, Binde- und Stützgewebe sowie Eiweißverbindungen wirkt entgiftend, entzündungshemmend und schmerzstillend beteiligt an der Glykolyse (Zuckerstoffwechsel)	Resorption: • über den Darm Ausscheidung: • über die Nieren	Eiweißmangel	300 mg	Fleisch, eiweißhaltige Nahrungsmittel	
Chlorid	Vorkommen: • bis zu 97 Prozent im Extrazellularraum, der Rest in den Zellen Funktion: • zusammen mit Natrium verantwortlich für das extrazelluläre Flüssigkeitsvolumen • häufigstes Anion im Extrazellularraum • trägt nach Natrium am meisten zum osmotischen Druck im Extrazellularraum bei • spielt eine wichtige Rolle für den Säure-Basen-Haushalt • Bestandteil der Magensäure	Resorption: • über den Darm, aktive und passive Transporte Ausscheidung: • über die Nieren	Ursachen: • massives Erbrechen • chloridarme Nahrung • gestörte Rückresorption in den Nieren Folgen: • Wenig Chlorid bedeutet ein reduziertes Extrazellularvolumen: • Blutdruckabfall • geringe Harnausscheidung • gesteigerte Herzfrequenz • Exsikkosezeichen, z. B. trockene Haut	?? g	wird mit der Nah- rung als Kochsalz (NaCl) aufgenom- men	